= - SLAM: Scalable Locality-Aware Middleware for 1/0 in Scientific Analysis and Visualization

Pl: Jun Wang, Jun.Wang@UCF.edu, NSF CCF-1337244
Jiangling Yin, Xuhong Zhang, Junyao Zhang, Dan Huang, Jun Wang, Wu-chun Feng®

Department of Electrical Engineering & Computer Science, University of Central Florida (co-*Virginia Tech)

Abstract A Data Centric Load-balanced Scheduler Performance Evaluation
. .  Read bandwidth comparison of NFS, PVFS and SLAM based
- Whereas traditional scientific applications are computationally » DC-scheduler always tries to launch a local task of the requesting BLAST schemes varri/ing the number of nodes on Marmot
intensive, recent applications require more data-intensive process, that is, a task with its corresponding data available on the node (NSF P
analysis and visualization to extract knowledge from the of the requesting process.. /0 Performance
explosive growth of scientific information and simulation g
data. « The DC-scheduler algorithm takes the unprocessed data fragments and g =%
node distribution as input. The output of the algorithm is the assignment £
« As the computational power and size of compute clusters of a task for a process. gmo /
continue to Increase, the /O read rates and associated f?;;;soo .
network for these data-intensive applications have been Wil W2 W3 W4 wl W2 W3 w4 B i
un?ble to keep pace, suffering from long 1/O latency in moving £ £ € £ £ ca . Lo
“big data” from the network/parallel file system and, in turn, ~+—SLAM-based  ~B~PVFS-based NFS-based
resulting in a serious performance bottleneck. f4 f6 f6 f2 f4 f6 f6 f2 | o |
 Performance gain of BLAST execution time when searching
. f7 f7 f7 f7 i _
. In this work, we propose “Scalable Locality-Aware f6 b ’ f4 f6 b f4 the nt database using SLAM, compared to NFS and PVFS
. ” . L e . " 7\ A ) N\ based.(NSF PRODE cluster)
Middleware” (SLAM), which allows scientific analysis O O Y O O © ©
applications to benefit from data-locality exploitation with the idle busy  busy bsz Basy busy busy basy Improvement in Use of SLAM

70%

f6: min ( |F2|, |F3|) =3 . _
f4: min ( |F3|, |F4]) = 2 Assign W1 to search fragment f6 . = =

use of HDFS, while also maintaining the flexibility and
efficiency of the MPI programming model.

f2: min ( |F2|, |F4]|) = 2 g 4o [ mnesbasec
0% I e m e e e EPVFS-based
Software Architecture (a) W1 requests a task (b) Assign a task to W1 o | F e B
o L R B d EE OB
. Our SLAM consists of three components: » A simple example where the DC-scheduler receives the task request of e T
(1) a process-to-data mapping scheduler (DC-scheduler) the process (W1). The scheduler finds the unassigned local tasks of W1
which transforms a compute-centric mapping into a data- (f2, 14 and 16 in this example). The task 16 will be assigned to W1 since . Execution time of PVFS, HDFS and SLAM based ParaView
centric one so that a computational process always accesses the minimum unassigned task value is 3 on W2 and W3, which also has (NSF PRODE cluster)
data from a local or nearby computation node f6 as a local task. After assigning f6 to W1, the number of unassigned
(2) a data location-aware monitor to support the DC- local tasks of Wi—4 s 2. . I
scheduler, and . E %2% @HDFS-based (w/o DC-scheduier]
(3) a virtual translation layer enabling computational § o % = —
processes to execute on underlying distributed file systems. SLAM-I/O: A Translation Layer §150 § %%
==  p|Location | s » The 1/O call in our prototype. A FUSE kernel module redirects file : }Q:% % -
. | Menitor (process id) system calls from parallel 1/0 to SLAM-1/O. SLAM-I/O wraps HDFS # of nodes
— § * clients and translates the 1/O call to DFS I/O.
- Index File[#=| Data Set| | p..q Filters / Conclusion
% P & Partition| |pjace|(# Render/ FUSElib [d—®{ SLAM-I/O - -
§ ] /O | N———— MPI-1/0, ' ' * By testing our SLAM prototype system with real-world data, we
% ’1 read() pi Vata POSt POSIX-VO i t saw significant performance increases of over traditional MPI
S | architectures.
$ - | | DFS I/0 « We found performance and scalability increases iIn
Proposed SLAM for ParaView. The DC-scheduler assigns data e Y | mpiBLAST, and ParaView by using our DC-scheduler
processing tasks to MPI processes such that each MPI VFS-System | | FUSE Kernel | t t ¢ algorithm.
process could read the needed data locally. call() Module | == HDFS% + The easy integration of SLAM into MPI programming model
| allows MPI-based data-intensive applications to efficiently run

on commodity clusters.

This work is conducted at a PRODE staging cluster—128-node Marmot cluster, which is
supported in part by the National Science Foundation under awards CNS-1042537 and
CNS-1042543 (PRODE)




