
	
 	
 	
 	

Abstract Performance Evaluation

Software Architecture

Conclusion

A Data Centric Load-balanced Scheduler
•  Whereas traditional scientific applications are computationally

intensive, recent applications require more data-intensive
analysis and visualization to extract knowledge from the
explosive growth of scientific information and simulation
data.

•  As the computational power and size of compute clusters
continue to increase, the I/O read rates and associated
network for these data-intensive applications have been
unable to keep pace, suffering from long I/O latency in moving
“big data” from the network/parallel file system and, in turn,
resulting in a serious performance bottleneck.

•  In this work, we propose “Scalable Locality-Aware
Middleware” (SLAM), which allows scientific analysis
applications to benefit from data-locality exploitation with the
use of HDFS, while also maintaining the flexibility and
efficiency of the MPI programming model.

•  DC-scheduler always tries to launch a local task of the requesting
process, that is, a task with its corresponding data available on the node
of the requesting process..

•  The DC-scheduler algorithm takes the unprocessed data fragments and

node distribution as input. The output of the algorithm is the assignment
of a task for a process.

SLAM-I/O: A Translation Layer

•  The I/O call in our prototype. A FUSE kernel module redirects file
system calls from parallel I/O to SLAM-I/O. SLAM-I/O wraps HDFS
clients and translates the I/O call to DFS I/O.

•  By testing our SLAM prototype system with real-world data, we
saw significant performance increases of over traditional MPI
architectures.

•  We found performance and scalability increases in
mpiBLAST, and ParaView by using our DC-scheduler
algorithm.

•  The easy integration of SLAM into MPI programming model
allows MPI-based data-intensive applications to efficiently run
on commodity clusters.

•  Read bandwidth comparison of NFS, PVFS and SLAM based
BLAST schemes varying the number of nodes on Marmot
(NSF PRObE cluster)

•  Performance gain of BLAST execution time when searching
the nt database using SLAM, compared to NFS and PVFS-
based.(NSF PRObE cluster)

•  Execution time of PVFS, HDFS and SLAM based ParaView
(NSF PRObE cluster)

 Proposed SLAM for ParaView. The DC-scheduler assigns data
processing tasks to MPI processes such that each MPI
process could read the needed data locally.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 SLAM:	
 Scalable	
 Locality-­‐Aware	
 Middleware	
 for	
 I/O	
 in	
 Scien9fic	
 Analysis	
 and	
 Visualiza9on
PI: Jun Wang, Jun.Wang@UCF.edu, NSF CCF-1337244

Jiangling Yin, Xuhong Zhang, Junyao Zhang, Dan Huang, Jun Wang, Wu-chun Feng*
Department of Electrical Engineering & Computer Science, University of Central Florida (co-*Virginia Tech)

•  Our SLAM consists of three components:
 (1) a process-to-data mapping scheduler (DC-scheduler),

which transforms a compute-centric mapping into a data-
centric one so that a computational process always accesses
data from a local or nearby computation node,

 (2) a data location-aware monitor to support the DC-
scheduler, and

 (3) a virtual translation layer enabling computational
processes to execute on underlying distributed file systems.

•  A simple example where the DC-scheduler receives the task request of
the process (W1). The scheduler finds the unassigned local tasks of W1
(f2, f4 and f6 in this example). The task f6 will be assigned to W1 since
the minimum unassigned task value is 3 on W2 and W3, which also has
f6 as a local task. After assigning f6 to W1, the number of unassigned
local tasks of W1–4 is 2.

This work is conducted at a PRObE staging cluster—128-node Marmot cluster, which is
supported in part by the National Science Foundation under awards CNS-1042537 and
CNS-1042543 (PRObE)

